Задания и Ответы на олимпиаду по Математике для 10, 11 класса 16.10.2024 – 1 группа

Содержание
  1. 10 класс
  2. Задание 1: Имеется кубик, на каждой грани которого написано число. Развёртка этого кубика приведена на рисунке.
  3. Задание 2: Пешеходная тропа начинается от точки P. Тропа состоит из ровного участка от точки P до точки Q, за которым следует подъём в гору от Q до смотровой площадки в точке R. Путешественник шёл от точки P к Q, затем к R и обратно от R к Q, затем к P. Скорость путешественника при подъёме в гору была на 50 % меньше, чем при спуске, и на 1км/ч меньше, чем при движении на ровном участке.
  4. Задание 3: У Билли Бонса есть x монет в пять песо, y в десять песо и z в двадцать пять песо. У сквайра Трелони есть y монет в пять песо, z в десять песо и x в двадцать пять песо. У Джона Сильвера есть z монет в пять песо, x в десять песо и y в двадцать пять песо . У них в сумме 6560 песо.
  5. Задание 4: Найдите все натуральные n такие, что найдётся простое число p, для которого выполняется равенство 6n2+p+6=n(2p+15).
  6. Задание 5: В треугольнике ABC проведена высота AK. H точка пересечения высот треугольника. Даны косинусы двух его углов: cos∠CAB=4/5, cos∠ABC=8/17. Для вашего удобства мы посчитали косинус третьего угла cos∠BCA=13/85. Найдите AH/HK.
  7. Задание 6: Парк имеет четыре площадки A, B, C, D и дорожки, по которым можно двигаться в указанных на плане направлениях.
  8. Задание 7: На сторонах BC и AB остроугольного треугольника ABC выбраны точки M и N соответственно так, что ∠BAM=∠MAC=∠NCB. Известно, что AC=24, AN=8. Найдите значение выражения AM2−MC2.
  9. 11 класс
  10. Задание 1: Детям раздали кубики трёх цветов и попросили каждого из них сложить башенку из четырёх кубиков, поставив их друг на друга. Полностью одноцветных башенок быть не должно. Чему равно наибольшее возможное число детей, если башенки у всех получились разные?
  11. Задание 2: В детском лагере каждый день проводится по одному конкурсу. Каждый отличившийся в конкурсе получает вечером ровно один приз. В четверг каждый приз стоил 30 рублей, а в пятницу 49 рублей. При этом в пятницу суммарные затраты на призы оказались выше, чем в четверг, как минимум на 1000 рублей, а число награждённых в эти дни отличалось не более чем на 2.
  12. Задание 3: Найдите Найдите √19−x2-√10−x2, если √19−x2+√10−x2=4.5.
  13. Задание 4: Две окружности пересекаются в точках A и B. Через точку B проведены касательные к каждой из окружностей, вторично пересекающие их в точках C и K. Найдите длину хорды AB, если CA=18, KA=32 и касательные перпендикулярны друг другу.
  14. Задание 5: В прямоугольном треугольнике с острым углом α катеты равны 5cos α и sin α. Найдите квадрат меньшего катета. Ответ выразите в виде несократимой обыкновенной дроби.
  15. Задание 6: Для скольких пар (p;q), образованных целыми числами, выполняется неравенство p2+q2<2(3p+2q)? Пары, отличающиеся порядком элементов, считаются различными.
  16. Задание 7: Сколько вершин может быть у выпуклого многогранника, имеющего в точности 11 рёбер? Укажите все подходящие варианты. Каждый ответ записывайте в отдельное поле, добавляя их при необходимости.
  17. Задание 8: Председатель спортивной федерации поручил всю работу своим пяти заместителям и выдал им наборы печатей. Документ считается действительным, если на нём стоят печати всех возможных видов. Необходимо сделать так, чтобы любые три заместителя могли выдать действительный документ, а никакие два не могли. Какое минимальное число видов печатей должно быть?

Содержание

10 класс

Задание 1: Имеется кубик, на каждой грани которого написано число. Развёртка этого кубика приведена на рисунке.

Задания и Ответы на олимпиаду по Математике для 10, 11 класса 16.10.2024 – 1 группа

Из 27 таких одинаковых кубиков построен куб большего размера. Чему равна минимально возможная сумма всех чисел, оказавшихся на шести гранях этого куба?

Ответ: 118

Задание 2: Пешеходная тропа начинается от точки P. Тропа состоит из ровного участка от точки P до точки Q, за которым следует подъём в гору от Q до смотровой площадки в точке R. Путешественник шёл от точки P к Q, затем к R и обратно от R к Q, затем к P. Скорость путешественника при подъёме в гору была на 50 % меньше, чем при спуске, и на 1км/ч меньше, чем при движении на ровном участке.

Скорость при спуске оказалась в 1.5 раза больше, чем при движении на ровном участке. Найдите общее расстояние, пройденное туристом, если на весь путь он потратил 9 часов. Ответ выразите в километрах.

Ответ: 18

Задание 3: У Билли Бонса есть x монет в пять песо, y в десять песо и z в двадцать пять песо. У сквайра Трелони есть y монет в пять песо, z в десять песо и x в двадцать пять песо. У Джона Сильвера есть z монет в пять песо, x в десять песо и y в двадцать пять песо . У них в сумме 6560 песо.

Билли Бонс купил лодку, отдав половину своих монет в десять песо и 45 своих монет в двадцать пять песо. Сколько песо осталось у Билли Бонса?

Ответ: 164

Задание 4: Найдите все натуральные n такие, что найдётся простое число p, для которого выполняется равенство 6n2+p+6=n(2p+15).

Ответ: 3

Задание 5: В треугольнике ABC проведена высота AK. H точка пересечения высот треугольника. Даны косинусы двух его углов: cos∠CAB=4/5, cos∠ABC=8/17. Для вашего удобства мы посчитали косинус третьего угла cos∠BCA=13/85. Найдите AH/HK.

Ответ: 25/17

Задание 6: Парк имеет четыре площадки A, B, C, D и дорожки, по которым можно двигаться в указанных на плане направлениях.

Задания и Ответы на олимпиаду по Математике для 10, 11 класса 16.10.2024 – 1 группа

На плане рядом со стрелками указано время в минутах, которое требуется, чтобы пройти по соответствующей дорожке. Дима прошёл из A в D за t минут (t≤205). Сколько существует различных возможных значений t?

Ответ: ???

Задание 7: На сторонах BC и AB остроугольного треугольника ABC выбраны точки M и N соответственно так, что ∠BAM=∠MAC=∠NCB. Известно, что AC=24, AN=8. Найдите значение выражения AM2−MC2.

Ответ: 192

11 класс

Задание 1: Детям раздали кубики трёх цветов и попросили каждого из них сложить башенку из четырёх кубиков, поставив их друг на друга. Полностью одноцветных башенок быть не должно. Чему равно наибольшее возможное число детей, если башенки у всех получились разные?

Ответ: 78

Задание 2: В детском лагере каждый день проводится по одному конкурсу. Каждый отличившийся в конкурсе получает вечером ровно один приз. В четверг каждый приз стоил 30 рублей, а в пятницу 49 рублей. При этом в пятницу суммарные затраты на призы оказались выше, чем в четверг, как минимум на 1000 рублей, а число награждённых в эти дни отличалось не более чем на 2.

Какое наименьшее число награждённых могло быть в четверг?

Ответ: 48

Задание 3: Найдите Найдите √19−x2-√10−x2, если √19−x2+√10−x2=4.5.

Ответ: 2

Задание 4: Две окружности пересекаются в точках A и B. Через точку B проведены касательные к каждой из окружностей, вторично пересекающие их в точках C и K. Найдите длину хорды AB, если CA=18, KA=32 и касательные перпендикулярны друг другу.

Ответ: 25

Задание 5: В прямоугольном треугольнике с острым углом α катеты равны 5cos α и sin α. Найдите квадрат меньшего катета. Ответ выразите в виде несократимой обыкновенной дроби.

Ответ: 25/26

Задание 6: Для скольких пар (p;q), образованных целыми числами, выполняется неравенство p2+q2<2(3p+2q)? Пары, отличающиеся порядком элементов, считаются различными.

Ответ: ???

Задание 8: Председатель спортивной федерации поручил всю работу своим пяти заместителям и выдал им наборы печатей. Документ считается действительным, если на нём стоят печати всех возможных видов. Необходимо сделать так, чтобы любые три заместителя могли выдать действительный документ, а никакие два не могли. Какое минимальное число видов печатей должно быть?

Ответ: 10

Сколько печатей надо выдать каждому заместителю?

Ответ: 6

Рейтинг
( Пока оценок нет )
nekinuk/ автор статьи
Понравилась статья? Поделиться с друзьями:
Портал о заболеваниях груди
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: